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A relation between the 10rmulations of the boundary element method (BEM) based on boundary integral equations (BIEs) 
and the method of weighted errors (MWE) [1, 2] and the variational formulations [3--11] is established, which can be used not 
only to solve problems in the theory of elasticity but also other problems of mathematical physics. Copyright O 1996 Elsevier 
Science Ltd. 

The formulation of l~e boundary element method (BEM) based on boundary integral equations (BIEs) 
is essentially a numerical method of solving these equations: the desired density at the points of the 
boundary element can be approximated by the interpolants of the finite element method (FEM), a BIE 
being written for ea~-h nodal point of the discrete boundary (the collocation method). Thus, the problem 
can be reduced to a system of discrete boundary equations (DBEs) for the nodal values of the desired 
density. The formulation of the BEM on the basis of the method of weighted errors (MWE) involves 
reducing the approximate solution of the boundary-value problem to solving the problem of minimizing 
the error in the boundary conditions at the points of the discrete boundary. In doing so the well-known 
integral relations based on Green's formulae are used. These connect the values of functions at the 
points of the domain and the boundary written for the approximation of the desired solution and the 
singular (fundamental) solution of the differential equation of the boundary-value problem by the FEM 
interpolants. 

The variational tormulations of the BEM, which are the gist of the variational method of boundary 
elements, make use of problems concerned with minimizing the boundary functionals (BF) or the 
generalized Trefftz functionals (GTF) of the original boundary-value problems for admissible functions 
of the form of discrete boundary potentials whose density can be approximated by the FEM interpolants. 
The relation between the variational formulation of the BEM and the formulation based on the MWE 
is obvious: the variational boundary equations obtained by minimizing the BF (or GTF) can be regarded 
as the relations of the MWE for the constructed boundary-element approximations "in Ritz's sense" 
of the solution of the problem and the given boundary values. 

As in the case of weak variational formulations of the FEM, when "variational" equations of Galerkin 
type are used [12, 13], a weak variational formulation of the MBE is possible. To solve the Neumann 
boundary-value pzoblem for Laplace's equation this formulation uses the direct interpolation of the 
normal derivative at the points of the discrete boundary and a discrete condition corresponding to the 
condition for the normal derivative of a harmonic function, which is satisfied a priori in the formulation 
"in Ritz's sense". 

Below we shall establish (using the solution of the Saint-Venant problem as an example) that the 
DBEs obtained in the weak formulation are the same as the DBEs resulting from the formulation of 
the MBE based on the BIE, thereby establishing a relation between the formulations. 

1. The Saint-Venant problem of the twisting of a homogeneous isotropic rod, stated as a problem in 
mathematical physics, corresponds [14] to the non-homogeneous Neumann boundary-value problem 
for Laplace's equation 

Aq~(x) = 0, x ~ G; 8vtPls = f ( Y ) ,  Y e S (1.1) 

f = yt2) cos(v, x ~t)) - yCt) cos(v, x t2~ ) 

Classical potential theory can be used to solve this problem. The desired solution can be represented 
as a harmonic simple-layer potential (SLP) with unknown density [15] 
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q)(x)=~V(y)lnl  ds(y), x~'G, y ~ S  (1.2) 
$ r 

Here G is the region of intersection of the rod and the boundary S and r = ix - y  I. Note that ¢ exists 
provided that S is sufficiently smooth (a Lyapunov surface [15]) and ¥ is a continuous function at the 
points of S. In this connection we observe that the algorithm of the BEM (the indirect formulation 
[1, 2]) makes use of an approximating SLP in the form of the sum of integrals over boundary elements, 
at the points of which the density interpolation is a continuous function. 

In what follows we shall retain the notation of [3, 7]: let As~ be a linear boundary element and let Sa 
= UA~n (n --- 1 . . . . .  /7) be the discrete boundary of the polygonal cross-section Ga of the rod. In global 
(Cartesian) coordinatesy = (y0),y(2)) the approximating SLP for (1.2) has the form 

q~v(x)= S V a ( y ) l n i  dsa(y) = ~. I V . ( y ) l n l  ds(y,), xeG--a (1.3) 

where y~i) (11) (i = 1, 2) is the relation, at the points of As,, between the global coordinates and the 
local coordinate 11 E [-1, 1] of the linear element 

2 + 

Y(ni)(ll) = Z Y~)V, = y~i)+ ~(i)rl (1.4) 
k = l  

1""'2 ""' + v .% = 71 - r. i' ) 

Here Y~) (i = 1, 2) are the Cartesian coordinates of the nodes As,,. 
In the general ease the interpolation nodes (the functional nodes) may not coincide with the geometric 

nodes k = 1, 2. Then, given the interpolation ¥ ,  = Z-~nk,¥~,,(rl), k' = 1 . . . . .  K', where W~, are the 
desired nodal values and ¥~,, are the basis functions of the BEM, the integral over ~k% in (1.3) can be 
written as 

+n x'  , 1 
I y- W,~'V~' In - - I J .  I dr1 (1.5) 

- I  k' =l rn 

where I J, I is the Jacobian (the determinant of the Jacobi matrix) of the transformationyn(rl) 

Is.I = = {,__ k (1.6) 

We will consider the simplest case (which is sufficient, since the interpolations agree to within 
an order of magnitude, see below) of constant interpolation ¥,,  i.e. when the node k' lies between 
the nodes k = 1 and k = 2. Here ¥~,, == 1 and the nodal value of the density are denoted by Wn0 (n = 
1 , . . . ,  N). In this case the discrete BIE at the points A~ can be written as 

~V~no +*nO S ~,, (x)llnl--|ds(yn)`('~ J n ( Y . )  ~,,, \ r .)  
(1.7) 

where the first term on the left-hand side corresponds to a nodal jump of the normal derivative of the 
approximating SLP and fn is a given value of the normal derivative at the points of Ash. The integral 
coefficient in (1.7) (as a contribution of A~n) can be computed in the global coordinates between the 
limits of integration from y to y To do so we use the equality 

x( i )  _ y~i) 
ln rn = i=1,2 

~x (i) r, 2 ' 

and the following substitution for the variable of integration 
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- ",. <0 -.,n = - dYCn i), i = !, 2 
oyn rn 

Here r" = Ix -Yn  l, x e SA, y" e AS" and the values of the direction cosines of  the outer normal vector 
vn at the points of AS" [7] are also used, see (1.4) and (1.6) 

~(2)  p'n(1) 
cc,soq,, -cos(v,,,xm)= -:n- cosot2, ,,,cos(v',x~2~)= (1.8) 

As a result, we obtain for any n 

I ~ v , ( x ) ( l n l l d s ( y n ) f f i - ( k n - k 2 t )  In r ~  
t~, r" ) rnt x 

k ,  -  "em , = l x - I, x S A ,  A S ,  

(1.9) 

It follows that when the DBEs are written for x = Ymo, the contributions of the boundary element 
As" depend on the distance from the functional node Ym0 of the constant interpolation density ~" to 
the geometric node.,; Y,a, (k = 1, 2; n = 1 . . . .  , N). We use (1.4) and (1.6) to approximate the given 
value of  the normal derivative off(y) at the points of AS,, (see (1.1)) 

1 2 v ( i ) ~ ( i )  
*nO *n ' fn = I"~n [ '~ Vn (1.10) 

As a result, the system of DBEs based on the discrete BIE (1.7) for constant functional interpolation, 
taking (1.9) and (1.1.0) into account, can be written as 

N N 
~n0a~m ffi ~ fn, m = l  ..... N (1.11) 

n=l n=l 

where 

a M = n + c ,  ln r'2rm° (c, =k2 I - k ~ )  
rnl YmO 

are the coefficients of  the linear algebraic system of equations for the nodal values Wn0 of the density 
of the approximating SLE 

It is obvious that for fixed m each term W'0a,,m on the left-hand side of (1.11) can be regarded as a 
normal derivative at ASh, (n = 1 . . . .  , N), since this is so for each term on the right-hand side (this also 
follows from the dis~:rete BIE (1.7)). The aforesaid serves as a justification of the following interpolation 
problem: let {W'0}n = 1 ..... N be a solution of system (1.11); it is required to determine the nodal values 
Oat (k = 1, 2 being the geometric nodes of As') of  the interpolation of some function Cp,,(y), y e As" 
whose normal derivative at the points of As" is equal to W'0a',n (the constant interpolation Yn and linear 
interpolation ~p" being consistent to within an order of magnitude). 

2. For the linear interpolation Cp'(yn(rl) ) = gOntYk (k = 1, 2), to compute the normal derivative 
Ov~p" one can use [:3, 7] the function ~k(y'(rl)), differentiated as follows: 

~Vk ~Vk 3xl i = ! . 2 ;  k = l , 2  ~y~ i l =  i~q " {i)' ay~ 

Here 3~l/y~ (/) = (~(i)/~q)-l,  and the direction cosines are given by (1.8). As a result, we obtain 
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0v"(Pn [Jn I[ 0.Yn (1) 0~)'~ 2))k~--I On*On~t' [O~y. : ~  

Taking into account the relation between the global coordinates and the local coordinate (see (1.4)) 
as well as (1.11), we find that the expression in square brackets on the fight-hand side of the last equality 
is equal to 

Y.(2)(F.~')) -~ - Y.~')(~.~)-' =k~' - k .  =¢ . ,  V .  

It follows that the interpolation of the normal derivative for the linear interpolation ~.  at the points 
of  ~s n has the form 

= c. ~ O.kO~¥t, Vn (2.1) 

For the linear basis functions of the BEM (see (1.4)) it is easily verified that if the equality Onl = 
On2 = On holds for the nodal values (consequently, ~.  = O,,Zyk = 0,, is constant at the points of ~ . ) ,  
then 

1 0 c n ( I o  - ~  . i ) = 0  

Taking (2.1) into account, we can write the equations of  the above interpolation problem in the form 

¢n (On2 -- O,~ ) = V,0a~,, Vn, m (2.2) 
21J.I 

The algorithm for solving a system of equations of the form (2.2) for O,u, (k = l, 2) uses the conditions 
for consistency between the elements Oni = O(,_1) 2, On2 = O(n+l)l (hence the number of required 
nodal values O,a is equal to the number of values ~Pn0 known from the solution of (1.11)) and the 
following condition for global interpolation (at the points of  Sa) of the normal derivative (see (2.1)) 

N Cn ~. 
Z ~ ~ i'Z=, O'aO~¥tds" (y) = 0 (2.3) 

n=l &% 

which corresponds (see below) to the condition for the normal derivative of the harmonic function. 
Taking (2.2) into account, we can write (1.11) in the form 

N N 
y~ c. (0 .2  _ O.~ ) = Y. f . ,  Vm (2.4) 
.=; 2 l J .  I .=1 

In Section 3 it will be established that system (2.4) is equivalent to the system of DBEs for the "Galerkin" 
weak variational formulation of the BEM. 

Remark. The form of the interpolation (2.1) in the global coordinates can be established according to (2.3) 

2 2 

A~ n k=l A~ n i=l Yn 

Here the integrals for i = 1, 2 can be computed uniquely. For example, for i = 1 we have 

( ) ! ~ ) ~ t ) ~ k C O S a l n d ~ ( Y n  ) =  ! °3y~ l )¥kCOS0t ln l  dY(nl) = 

co~a,. [vk(y~,) ,.(,), . , .(,) r ~ ) l  
=--  ' ~" %12 I - - Y I ~ Y n  = 

COSG2n 

Next we use (1.8) and Yt at the nodes k = 1, 2 
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We obtain 
2 ~a(2) 

~n, [/),.,~¥k cosoq,as(y. ) -- ~-:=:m-(~n2 - ~nl ). Vn 
k=l  A.~n -n r i - .  

Similar calculations for k = 2 finally yield 

j" O~v,,~,,ds n =cn(*,,2-~,,s), Vn 
~,, 

The same result can also be obtained by integrating (2.1) (making use of the equality t/s0,n) = I Jn k/q) 

+1 

Bv,,~nds(yn) = cn ( 0 " -  ~nt) .[ I Ja Idrl = c n (On2 - Onl), Vn 
,~,, 21/hi az -I 

3. We will show that the density of the approximating SLP (1.3) can be constructed using a numerical 
Galerkin-type process employing the interpolation equations (2.2). 

We recall that Galcrkin's method uses the orthogonality of the error in satisfying the differential equation of 
the boundary-value problem to the set of coordinate functions satisfying all boundary conditions of the problem 
[14]. There is a version [14] of the method for the case of natural boundary conditions and also various extensions 
of the Galerkin process [14] using the aforementioned idea of the method for a different choice of the system of 
coordinate functions: Petrov's extension the method of separating the domain, and the collocation method. 

Here, to solve problem (1.1) approximately as an approximating SLP (1.3), we propose a process of 
finding the density which uses the condition for the error in satisfying the boundary condition of the 
problem to be orthogonal to the basis functions of the BEM and a discrete analogue of the condition 
for the normal derivative of a harmonic function. The process is justified numerically, since the resulting 
system of DBEs is equivalent to system (2.4), which follows from the system of discrete BIEs, the 
convergence of the sequence of approximating SLPs having been established in [6]. 

We require that the condition 

2 

(Ov,(Pn- fn)~, vtds(yn) =0, Vn (3.1) 
A~ a I= 1 

should be satisfied at the points of the elements Ash, where 0vCp,, is defined by (2.1) andf~ by (1.10). 
Changing to local coordinates, we rewrite (3.1) in the form 

(3.2) 

The right-hand side is written for the general case of geometric interpolation, when y~0 (i = 1, 2) is 
defined by (1.4), and (1.8) is used. The transformation of the left-hand side.of.(3.2) involves evaluating 
the integrals fOn¥ j:~ltdr I over the interval [-1, 1], while the right-hand side involves fytd~ and f~¥tdrl. 

As a result, (3.2) becomes 

2 + 

i= l  
Vn 

which, after summing over n = 1 . . . .  , N, is equivalent to (2.4). For the middle node k" = 0 of the 

element As n we have l~n (i) = Yn(g ). 
Establishing the equivalence of the systems of DBEs for the two formulations of the BEM considered 

above involves condition (2.3), which is a discrete analogue of the condition for the normal derivative 
of a harmonic function. Indeed, the normal derivative of the approximating SLP 9~(x) (see (1.3)) for 
x e Sa corresponds to the left-hand side of the discrete BIE (see (1.7)). Since the approximating SLP 
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is a harmonic function in G~, the integral of the normal derivative over SA must be zero. This is so because 
the integral of the fight-hand side of the discrete BIE over SA is zero, which corresponds to the solubility 
condition for the Neumann problem [14] and is easily verified for the approximation (1.10). The change 
from the system of discrete BIEs of the form (1.7) to the system (2.4) using (2.2) is justified iftbe global 
interpolation of the normal derivative conforms to condition (2.3). Thus, in the realization of the weak 
formulation algorithm Galerkin's equations are supplemented by condition (2.3). 

It is also natural to try to establish a correspondence between the extension of the Galerkin process presented 
in Section 3 and Galerkin's method for the direct solution of the BIE of Fredholm type [14] for the basis functions 
of the BEM. Without touching upon the issue of the convergence of the "Galerkin" boundary element 
approximations for the solution of the BIE, one can assert that if the discrete BIE holds for each functional node 
(see (1.7) for constant boundary elements), then multiplying each BIE by xyt (l = 1, 2), integrating the result over 
S~,, and taking the sum over n = 1 . . . . .  N, we obtain a realization of the Galerkin process for the solution of the 
BIE. 

The approximate solution of problem (1.1) both in the formulation based on the BIE and in the 
"Galerkin" formulation can be represented [7] as a linear combination of products of the nodal values 
~l'~ of the SLP density (1.3) and the integral "influence" functions of the k'th mode and nth boundary 
element, which can be computed using (1.5). Each term in this linear combination is a harmonic function 
in the domain Ga with boundary S,~. Then, for such functions the approximating problem for (1.1) is 
equivalent (see, for example, [7]) to the variational problem for the corresponding BE It can be verified 
that the boundary-element approximations constructed above (for the nodal values ~,a," found from 
the formulation based on the BIE or the "Galerkin" formulation) satisfy the variational equation for 
the BF and, consequently, they minimize the functional. In [6] it was established that the minimizing 
sequence for the BF converges to the solution of problem (1.1) as N ~ o o .  

We have therefore established a relationship between the formulation of the BEM based on a SLP 
and the "Ritz" formulation. 

The above argument can also be used to relate the formulations of the BEM for solving problems 
in the linear theory of elasticity. 
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